Exercise 17

Verify that the solution to Equation 1 can be written in the form $x(t)=A \cos (\omega t+\delta)$.

Solution

Equation (1) is the equation of motion for a mass on a spring with no damping.

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}+k x=0 \tag{1}
\end{equation*}
$$

Find the first derivative of $x(t)$.

$$
\frac{d x}{d t}=-A \omega \sin (\omega t+\delta)
$$

Find the second derivative of $x(t)$.

$$
\frac{d^{2} x}{d t^{2}}=-A \omega^{2} \cos (\omega t+\delta)
$$

Substitute these formulas into equation (1).

$$
\begin{gathered}
m\left[-A \omega^{2} \cos (\omega t+\delta)\right]+k[A \cos (\omega t+\delta)] \stackrel{?}{=} 0 \\
A\left(-m \omega^{2}+k\right) \cos (\omega t+\delta) \stackrel{?}{=} 0
\end{gathered}
$$

Since $\omega^{2}=k / m$,

$$
0=0
$$

which means $x(t)=A \cos (\omega t+\delta)$ is a solution to equation (1).

